خانه شیمی اردبیل دبیرستان کنکور دانشگاهی

khaneashimiardabil تدریس شیمی در اردبیل برای دانش آموزان دوره متوسطه و داوطلبان کنکور تدریس شیمی برای دانشجویان رشته های مختلف تدریس نانو

۱۹ مطلب با کلمه‌ی کلیدی «متلب» ثبت شده است

نامگذاری ترکیبات ساده

قبل از اینکه ساختار پایه اجسام شیمیایی بنا نهاده شود، ترکیبات با نام افراد، محلها، و خواص ویژه نامگذاری شده بودند. برای نمونه نمک گلوبر (سدیم سولفات، کشف شده توسط جی. آر. گلوبر)، نمک آمونیاک (آمونیوم کلرید، برگرفته شده از نام خدای باستانی مصری آمون از معبد نزدیک مکان بوجود آمده جسم)، و سودا شوینده (سدیم کربنات، استفاده شده برای نرم کردن آب شستشو) را می توان ذکر کرد. امروزه میلیونها ترکیبات متعدد شناخته شده اند و هزاران ترکیب دیگر نیز سالانه کشف می شوند. بدون یک سیستم نامگذاری ترکیبات، نوشتن نام ، با این زیادی اجسام یک وظیفه نا امید کننده خواهد شد. نامگذاری شیمیایی نامگذاری سیستماتیک ترکیبات شیمیایی است.

اگر یک ترکیب در تقسیم بندی آلی قرار نگیرد،  آن ترکیب بایستی معدنی باشد. ترکیبات معدنی ترکیبات عناصر دیگر غیر از کربن هستند. تعداد کمی استثنا در این شکل طبقه بندی شامل کربن مونو کسید، کربن دی اکسید، کربناتها، و سیانیدها می شوند؛ که همگی دارای کربن هستند و بطور کلی هنوز جزو معدنی ها محسوب می شوند.

در این بخش، ما در مورد نامگذاری تعدادی از ترکیبات معدنی ساده بحث خواهیم کرد. در ابتدا ما به نامگذاری ترکیبات یونی، بعد از آن، به تعدادی از ترکیبات مولکولی ساده، شامل ترکیبات مولکولی دوتایی (ترکیبات مولکولی دو عنصری) و اسیدها، و در نهایت، به هیدراتهای ترکیبات یونی خواهیم پرداخت. هیدراتهای ترکیبات یونی دارای مولکولهای آب آزاد همراه با ترکیبات یونی هستند.

همانطوریکه ما در بخش قبلی دیدیم، ترکیبات یونی، اجسامی هستند که از یونها تشکیل شده اند. اغلب ترکیبات یونی شامل اتمهای یک فلز و یک غیر فلز، برای مثال،NaCl می شوند. (نمکهای آمونیوم، مانند NH4Cl، یک استثنا برجسته هستند.) شما نامگذاری یک ترکیب یونی را با نامیدن کاتیون آن در اول و سپس آنیون آن در ادامه انجام  می دهید. برای مثال،

 

 

پتاسیم          سولفات

نام کاتیون       نام آنیون

قبل از اینکه شما بتوانید ترکیبات یونی را نامگذاری کنید، شما باید توانایی نوشتن نام یونها را داشته باشید.

ساده ترین یونها تک اتمی هستند. یک یون تک اتمی یونی تشکیل شده از یک اتم است. جدول یونهای تک اتمی معمول عناصر گروه اصلی را فهرست کرده است. قبل از اینکه شما به جدول نگاه کنید اول شما با قواعد پیشگویی بار روی چنین یونهایی و سپس به قواعد نامگذاری یونهای تک اتمی آشنا شوید.

 

 

قواعد پیشگویی بار یونهای تک اتمی

1. اغلب عناصر فلزی گروه اصلی یک کاتیون تک اتمی با بار برابر شماره گروه در جدول تناوبی (عدد رومی) را دارند. مثال: آلومینیوم، در گروه IIIA، یون تک اتمی Al3+ دارد.

2. تعدادی از عناصر فلزی با عدد اتمی بالا از قاعده قبلی استثنا هستند؛ آنها بیش از یک کاتیون دارند. این عناصر علاوه بر داشتن کاتیون با بار برابر شماره گروه، کاتیون متعارف با بار برابر شماره گروه منها 2 را نیز دارند. مثال: کاتیون متعارف سرب Pb2+ است. (شماره گروه 4 است؛ بار 2-4 است.) علاوه بر ترکیبات دارای Pb2+، برخی ترکیبات سرب دارای Pb4+ هستند.

3. اغلب فلزات واسطه بیش از یک کاتیون تک اتمی با بار متفاوت تشکیل می دهند. بیشتر این عناصر یک یون با بار 2+ دارند. مثال: آهن کاتیونهای متعارف Fe2+ و Fe3+ را دارد. مس کاینونهای متعارف Cu+ و Cu2+ را دارد.

4. بار آنیون تک اتمی برای یک عنصر غیر فلزی گروه اصلی برابر با شماره گروه منهای 8 است. مثال: اکسیژن آنیون تک اتمی O2- را دارد. (شماره گروه 6 است: بار 8-6 است.)

عناصر نشان داده شده رنگی ترکیبات یونهای تک اتمی ندارند.

http://khaneashimiardabil.ir

۱۳ اسفند ۹۸ ، ۰۱:۵۶ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

هفتمین مسابقه ملی فناوری نانو


 

http://khaneashimiardabil.ir

۰۹ اسفند ۹۸ ، ۱۱:۵۰ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

ترکیبات آلی

یک طبقه مهم از اجسام مولکولی ترکیبات آلی هستند که کربن ترکیب شده با سایر عناصر، نظیر هیدروژن، اکسیژن، و نیتروژن دارند. شیمی آلی بخشی از شیمی است که با این ترکیبات در ارتباط است . از نظر تاریخی، ترکیبات آلی از موادی که فقط از موجود زنده می توانستند تولید بشوند، محدود شده بودند و فرض شده بود که با توجه به منبع طبیعیشان دارای "نیروی حیاتی" هستند. وقتی شیمیدان آلمانی، فردریش وهلر اوره (ترکیب مولکولی در ادرار انسان، CH4N2O، شکل1) را از ترکیب مولکولی آمونیاک (NH3) و سیانیک اسید (HNCO) سنتز کرد، مفهوم نیروی حیاتی در 1828 رد شد. کار وی بطور روشنی ثابت کرد که یک ترکییب معین خواه از موجود زنده بدست آمده یا سنتز شده باشد، دقیقا یکی است.

شکل 1

مدل مولکولی اوره (CH4N2O)

اوره اولین مولکول آلی توسط یک شیمیدان از ترکیبات غیر آلی سنتز شد.

ترکیبات آلی قسمت عمده همه ترکیبات شناخته شده را می سازند. از 1975، بیش از 13 میلیون (60%) اجسام ثبت شده در ثبت مواد بین المللی با عنوان آلی فهرست شده است. شما هر روز با ترکیبات آلی هم در مواد زنده و هم در مواد غیر زنده مواجه می شوید. پروتئینها، آمینو اسیدها، آنزیمها، و DNA که سازنده بدن شما هستند همگی یا مولکولهای آلی یا حاوی مولکولهای آلی هستند. شکر خوراکی، روغن بادام زمینی، داروهای آنتی بیوتیکی، و متانول (شوینده شیشه جلوی ماشین) همگی مولکولهای آلی هستند. شیمی آلی و ترکیبات بوجود آمده با واکنشهای مولکولهای آلی احتمالا تشکیل دهنده اکثریت مواد موجود در اطراف شما در حال خواندن متن این صفحه هستند.

ساده ترین ترکیبات آلی هیدروکربنها هستند. هیدروکربنها ترکیباتی هستندکه فقط دارای هیدروژن و کربن هستند. مثالهای عادی شامل متان (CH4)، اتان (C2H6)، پروپان (C3H8 استیلن (C2H2)، و بنزن (C6H6) هستند. هیدروکربنها اغلب به عنوان منبع انرژی برای گرم کردن خانه ها، سوخت موتورها، و تولید برق استفاده شده اند. همچنان هیدروکربنها مواد آغازین برای اغلب پلاستیکها هستند. قسمت اعظم تحرک و راحتی تمدن فعلی ما بر اساس قیمت پایین و وجود هیدرو کربنها بنا شده است.

شیمی مولکولهای آلی اغلب با گروه اتمهای موجود در مولکول که خواص منحصر بفردی دارند، تعیین شده است. یک گروه عاملی یک قسمت واکنش پذیر مولکول است که واکنشهای قابل پیشگویی را انجام می دهند. وقتی شما از اصطلاح الکل، که یک ترکیب مولکولی است، استفاده می کنید، شما در عمل یک مولکول شیمیایی که یک گروه عاملی OH- را دارد مد نظر دارید. متیل الکل فرمول شیمیایی CH3OH دارد. واژه اتر یک مولکول آلی دارای یک اتم اکسیژن بین دو اتم کربن، همانند دی اتیل اتر (CH3CH2OCH2CH3) را نشان می دهد. جدول 1 چندین مثال از گروههای عاملی آلی همراه با مثال ترکیبات را نشان می دهد.

 

جدول 1 مثالهایی از گروههای عاملی آلی

 

گروه عاملی

نام گروه عاملی

نمونه مولکول

استفاده عمومی

-OH

الکل

متیل الکل

(CH3OH)

شوینده شیشه ماشین

-O-

اتر

دی متیل اتر

(CH3OCH3)

حلال

-COOH

کربوکسیلیک اسید

استیک اسید

(CH3COOH)

اسید سرکه

 

بررسی مفهوم 

تشخیص دهید که کدام یک ازترکیبات ذیل می توانند هیدروکربن، الکل، اتر، یا کربوکسیلیک اسید باشند؟

http://khaneashimiardabil.ir

۰۸ اسفند ۹۸ ، ۲۲:۰۴ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

مثال 2-3

نوشتن فرمول یونی، با یونهای معلوم

الف. کروم(III) اکسید به صورت رنگدانه سبز رنگ  مصرف می شود. این ترکیب از یونهای Cr3+ و O2- تشکیل شده است. فرمول کروم (III) اکسید چه هست؟

ب. استرونسیم اکسید ترکیب تشکیل شده از یونهای Sr2+ و O2- است. فرمول این ترکیب را بنویسید.

 

استراتژی مسئله بخاطر اینکه ترکیب خنثی است، مجموع بارهای مثبت و منفی صفر است. ترکیب یونی CaCl2، با یک یون Ca2+ و دو یون Cl را در نظر بگیرید. مجموع بارها 0 = (1-) × 2 + (2+) ×1 است.

توجه شود که تعداد یونهای کلسیم در CaCl2 با اندازه بار یون کلرید (1) برابر است. در حالیکه تعداد یونهای کلرید در CaCl2 برابر با بار یون کلسیم (2) است. در کل، شما اندازه بار روی هر یون را برای بدست آوردن زیرنویس برای یون دیگر بدست آورید. شما نیاز به ساده کردن فرمول بدست آمده با این روش خواهید داشت در نتیجه فرمول ساده ترین تسبت یونها را بیان می کند.

حل الف. شما می توانید به خنثی بودن الکتریکی با اختصاص بار آنیون به تعداد کاتیونها و بار کاتیون به تعداد آنیونها برسید. دو یون Cr3+  بار کل +6، و سه یون O2- بار کل -6 را دارند که ترکیبشان بار شبکه را صفر می کند.ساده ترین نسبت Cr3+  به O2- 2:3 است، و فرمولش Cr2O3 است. توجه شود که بار (بدون علامتش) روی یک یون زیرنویس یون دیگر می شود.

ب. شما می توانید ببنید که تعداد برابر از یونهای Sr2+ و O2- ترکیب خنثی را خواهد داد. بدین ترتیب فرمول SrO است. اگر شما از واحدهای بار برای پیدا کردن زیرنویس استفاده کنید، شما خواهید داشت:

فرمول نهایی SrO است، زیرا که این فرمول ساده ترین نسبت یونها را می دهد.

 

بررسی جواب

در موقع نوشتن فرمولهای یونی، همیشه مطمئن باشید فرمولی که شما می نویسید کوچکترین نسبت عدد کل یونها را نشان بدهد. برای نمونه، با استفاده از تکنیک استفاده شده در این مثال، Pb4+ و O2- با ترکیب شدن Pb2O4 را  می دهد، گرچه، فرمول درست PbO2 است، که کوچکترین نسبت عدد کل یونها را نشان می دهد.

تمرین:پتاسیم کرومات یک ترکیب مهم کروم است  که از یونهای K+ و CrO42- تشکیل شده است. فرمول ترکیب را بنویسید.

مسئله ها

1-فرمول ترکیبی هر یک از جفت یونهای ذیل را بنویسید.

2- فرمول ترکیبی هر یک از جفت یونهای ذیل را بنویسید.

http://khaneashimiardabil.ir

 

۰۷ اسفند ۹۸ ، ۲۱:۲۱ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

لوح تقدیر

۰۷ اسفند ۹۸ ، ۱۹:۵۷ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

معرفی نانوفناوری از زبان بنیانگذار آن

ریچارد فاینمن، فیزیکدانی است که نقش به سزایی در شکل گیری علوم نانو داشته است. در زمانی که کسی اطلاعات چندانی در زمینه ی علوم نانو نداشت، او در یک سخنرانی در انجمن فیزیک آمریکا با عنوان «در پایین دست، فضای زیادی وجود دارد»، سوالاتی در زمینه کار با مواد و اجسام در ابعاد خیلی ریز طرح کرد که ذهن هر شنونده ای را به خود مشغول ساخت. او همچنین با ذکرتفاوت های علوم نانو و فیزیک بنیادی، پیشنهادهایی مطرح کرد که هرچند برای افراد درآن دهه تعجب برانگیز و غیرممکن تصور می شد، اما امروز شاهد اجرائی شدن بسیاری از این پیشنهادها هستیم و با پیشرفت روزافزون بشر در زمینه علوم مختلف و تکنولوژی و همچنین دست یابی انسان به ابعاد بسیار ریز ماده، پیش بینی می گردد که تمامی پیشنهادهای او روزی به حوزه ی واقعیت های علم بشر وارد شوند.

1- تاریخچه‌ نانو
1-1- پیشنهادهای فاینمن درباره فناوری نانو
دیدگاه‌های ریچارد فاینمن، فیزیکدان برندة جایزه نوبل سال 1965، نقش به‌سزایی در پی‌ریزی علوم نانو داشته است. او دیدگاه‌های خود را در یک سخنرانی در انجمن فیزیک آمریکا با نام «در پایین‌دست، فضای زیادی وجود دارد»، مطرح کرد (29 دسامبر 1959، برابر با 23 آذر 1338). در این سخنرانی پیش‌بینی‌های قابل توجهی مطرح شد که در زمان ما تحقق بسیاری از آنها مشهود است. متنی که می‌خوانید، ترجمه‌ای است از سخنرانی فاینمن و توضیحاتی که در مورد میزان تحقق آن پیش‌بینی‌ها داده شده‌اند.

 

  •  حوزه علوم نانو


فاینمن:
می‌خواهم حوزه‌ای را شرح دهم که هنوز جای کار زیادی دارد. این حوزه شبیه حوزة فیزیک ذرات بنیادی نیست، زیرا چیز زیادی در مورد اینکه ذرات بنیادی عجیب چه هستند نمی‌گوید. بلکه بیشتر شبیه فیزیک حالت جامد است، چون در مورد پدیده‌های عجیبی که در شرایط پیچیده اتفاق می‌افتند، اطلاعات جالبی می‌دهد. به علاوه، نکته‌ای که از همه مهمتر است، تعداد زیادِ کاربردهای تکنیکی این حوزه است.

نکته:
واقعیت این است که علوم نانو نگرشی بنیادی درباره جهان در مقیاس کوچک به ما نمی‌دهند. نگرش بنیادی، پدیده‌های عالم را با معادلات ریاضی واحدی توضیح می‌دهد. علوم نانو به مقیاس کوچک‌تر از اتم کاری ندارند. در عوض، در مورد ذرات بنیادی بسیار ریزتر ــ به کوچکی کوارک‌ها و لپتون‌ها که حداقل ده مرتبه کوچک‌تر از اتم هستند ــ فیزیک بنیادی دستاوردهای خوبی دارد.
از سوی دیگر، علوم نانو نگرش متفاوتی در مورد ظهور پدیده‌های جدید می‌دهند. در این نگرش، از کنار هم گذاشتن تعدادی برهم‌کنشِ ساده بین اجزای تشکیل‌دهندة سیستم، خاصیت جدیدی در کل سیستم، متفاوت با خواص اجزای آن، بروز می‌کند؛ چیزی که در شبیه‌سازی‌های رایانه‌ای تا حدی مشاهده شده است. بنابراین، علوم نانو به ما نگرشی بنیادی در مورد پیشرفت‌های فناوری در آیندة نزدیک می‌دهند.

 

  • ساختن در مقیاس اتمی

فاینمن:
چیزی که می‌خواهم بگویم، مشکل تولید و کنترل اشیا در مقیاس کوچک است. به محض طرح این موضوع، مردم به من در مورد کوچک‌سازی و میزان پیشرفتِ آن تا امروز می‌گویند. آنها از موتورهای الکتریکی‌ای به کوچکی ناخن انگشت سخن می‌رانند. آنها می‌گویند وسیله‌ای وجود دارد که می‌تواند متن کتاب مقدس را در سر سوزن بنگارد. اما دنیای کوچک شگفت‌آورتری در پایین‌دست وجود دارد. در سال 2000، وقتی به روزگار ما نگاه کنند، با تعجب می‌پرسند چرا تا سال 1960 کسی به طور جدی به این سمت حرکت نکرده بود؟ چرا ما نمی‌توانیم 24 جلد «دایره‌المعارف بریتانیکا» را در سر یک سوزن بنویسیم؟ بگذارید ببینیم چه مسائلی دخیل هستند. پهنای سر سوزن یک میلی‌متر است. اگر آن را 25 هزار بار بزرگتر کنیم، سطح سر سوزن برابر با مساحت همة صفحات «بریتانیکا» می‌شود. بنابراین، تنها لازم است که اندازه‌های نوشته‌های دایره‌المعارف را 25 هزار بار کوچک کنیم. آیا چنین چیزی ممکن است؟ قدرت تشخیص چشم انسان دو دهمِ میلی‌متر است که برابر با یکی از نقطه‌های کوچک دایره‌المعارف یادشده است. اگر آن را 25 هزار بار کوچک کنید، هنوز هشتاد آنگسترم (هشت نانومتر) پهنا دارد، یعنی به پهنای 32 اتم در یک فلز معمولی. به زبان دیگر، یکی از آن نقاط هنوز هزار اتم در خود جای می‌دهد. بنابراین، هر نقطه می‌تواند در اندازه لازم برای چاپ تنظیم شود؛ دیگر شکی نیست که در سر سوزن فضای کافی برای قرار دادن «دایره‌المعارف بریتانیکا» موجود است.

نکته:
این کار در زمان حاضر امکان‌پذیر است. اگر سر سوزن از جنس سیلیکون و تخت باشد، با لیتوگرافی پرتوی الکترونی می‌توان نقوشی در این ابعاد و با این دقت ایجاد کرد.

فاینمن:
حال که «دایره‌المعارف بریتانیکا» روی سر سوزن جا شد، بیایید همة کتاب‌های عالم را در نظر بگیریم. کتابخانة کنگره حدود نُه میلیون جلد کتاب دارد، کتابخانة موزة بریتانیا پنج میلیون جلد و کتابخانة ملی فرانسه پنج میلیون جلد دیگر. مسلماً در میان اینها نسخه‌های تکراری هم وجود دارند. بنابراین، فرض کنیم 24 میلیون جلد کتابِ غیر تکراری در دنیا وجود دارند. کتابدار ما در کَلتِک (مرکز تحقیقاتی که فاینمن در آنجا تدریس و تحقیق می‌کرد) هر چه قدر تند و تیز باشد، بعد از ده سال فقط می‌تواند اطلاعات مربوط به 120 هزار جلد کتاب را توی کارت‌ها بنویسد. متن کتاب‌هایی که از کف تا سقفِ همة ساختمان کتابخانه چیده شده‌اند، و کارت‌هایی که همة کشوهای کتابخانه را انباشته‌اند، همه می‌توانند تنها در یک کارت نگه‌داری شوند. آیا چنین چیزی ممکن است؟

نکته:
اگر فرض کنیم هر کتاب یک میلیون حرف دارد، 24 میلیون جلد کتابی که فاینمن می‌گوید، در فضایی معادل با 24 ترابایت ذخیره می‌شود. در چند سال آینده، یک آرایه از لوح‌های RAID گنجایش همة این اطلاعات را خواهد داشت. گرچه هنوز به اندازة یک کارت کتاب نیست، اما خیلی به آن نزدیک است.

 

  •  ارتباط بین فیزیک، شیمی و زیست‌شناسی

فاینمن:
بنابراین باید بتوانیم اتم‌های منفرد را ببینیم. اگر اتم‌ها را از هم جدا ببینیم، چه فایده‌ای دارد؟ ما دوستانی در رشته‌های دیگر داریم، مثلاً در زیست‌شناسی. ما فیزیکدان‌ها معمولاً به آنها نگاه می‌کنیم و می‌گوییم: «می‌دانید چرا همکاران شما این‌قدر کُند پیشرفت می‌کنند؟ (در واقع، من رشته‌ای را نمی‌شناسم که در زمان ما رشدی به سرعت زیست‌شناسی داشته باشد) شما باید ریاضیات را بیشتر به کار ببرید، همان کاری که ما می‌کنیم.» آنها مؤدبانه پاسخ می‌دهند: «کاری که شما باید انجام دهید تا ما سریع‌تر پیشرفت کنیم، این است که میکروسکوپ الکترونی را صد مرتبه بهتر کنید».

نکته:
میکروسکوپ‌های پیمایشیِ امروزی قدرت تشخیص پستی و بلندی‌هایی از مرتبة دهم آنگستروم (صدم نانومتر) را دارند. یعنی فیزیکدان‌ها درخواستی را که زیست‌شناسان آن زمان از زبان فاینمن بیان کرده‌اند، انجام داده‌اند.

فاینمن:
اصلی‌ترین مسائل در زیست‌شناسی امروز چه هستند؟ سؤال‌هایی هستند مثل: ترتیب پایه‌های DNA چیست؟ وقتی یک جهش ژنتیکی رخ دهد، چه اتفاقی می‌افتد؟ ترتیب پایه‌ها در DNA چه ارتباطی با اسیدهای آمینه در پروتئین دارد؟ ساختار RNA چیست؟ یک‌زنجیره‌ای است یا دوزنجیره‌ای و چگونه در ترتیب پایه‌ها با DNA مرتبط می‌شود؟ ساختار میکروزوم چیست؟ پروتئین‌ها چطور سنتز می‌شوند؟ RNA کجا می‌رود؟ چگونه قرار می‌گیرد؟ پروتئین‌ها کجا قرار می‌گیرند؟ آمینواسیدها از کجا داخل می‌شوند؟ در فتوسنتز، کلروفیل کجاست؟ چگونه چیده شده است؟ کاروتنویدها کجا در این فرآیند دخیل می‌شوند؟ سیستم تبدیل نور به انرژی شیمیایی چیست؟
پاسخ دادن به این سؤالات بنیادی زیست‌شناسی بسیار ساده است. کافی است به ساختارها نگاه کنید. می‌توانید ترتیب پایه‌ها را در زنجیره یا ترکیب میکروزوم را ببینید. متأسفانه میکروسکوپ‌ها در حال حاضر، مقیاسی را می‌بینند که بسیار زمخت است. میکروسکوپ را صد مرتبه بهتر کنید. در این صورت، بسیاری از مسائل زیست‌شناسی ساده‌تر می‌شوند.

نکته:
امروزه با استفاده از انبرک‌های لیزری می‌توان یک مولکول DNA را زیر میکروسکوپ نیروی اتمی ثابت و تصویرش را ثبت کرد.

فاینمن:
اگر فیزیکدان‌ها بخواهند، می‌توانند دشواری کار شیمیدان‌ها در مسائل تجزیة شیمیایی را حل کنند. تجزیة هر ترکیب پیچیدة شیمیایی بسیار ساده است، فقط باید به آن نگاه کرد و دید اتم‌ها کجا هستند. یک سیستمِ زیستی می‌تواند بسیار کوچک باشد. سلول‌ها خیلی ریز، اما بسیار فعال‌اند. آنها ترکیبات مختلفی می‌سازند، حرکت می‌کنند، و همه جور اعمال شگفت‌انگیز انجام می‌دهند، همه در مقیاسی بسیار ریز. همچنین آنها اطلاعات ذخیره می‌کنند. امکانش را تصور کنید که ما هم بتوانیم چیزی بسیار کوچک بسازیم که آنچه ما می‌خواهیم انجام دهد یا به عبارت دیگر بتوانیم شیئی بسازیم که در آن ابعاد، مانور دهد!

نکته:
امروزه نانوزیست‌فناور‌ها تلاش می‌کنند تا با مهندسیِ سلول‌های جدید، فعالیت‌های این سلول‌ها را مطابق هدف مطلوبشان کنترل کنند.

 

  •  نانوماشین‌ها

فاینمن:
امکانات یک ماشین کوچک با قابلیت تحرک چیست؟ آنها ممکن است به‌دردنخور باشند، اما مسلماً ساختن آنها مُفرّح است. من نمی‌دانم به طور عملی چطور در ابعاد ریز این کار را انجام دهم، اما می‌دانم که ماشین‌های محاسبة بسیار بزرگ هستند، آنها اتاق‌های متعدد را اشغال می‌کنند. چرا نمی‌توانیم آنها را خیلی کوچک بسازیم، آنها را از سیم‌های ریز بسازیم، از اجزای کوچک و منظور من از کوچک این است که به عنوان مثال سیم‌ها 10 یا 100 اتم پهنا داشته باشند و مدارها در گستره چند آنگستروم قرار گیرند.

نکته:
این شبیه همان مرحله‌ای است که فناوری سنتی سیلیکون امروزه در آن قرار دارد. روش‌های زیادی برای ساخت اجزای سنتی الکترونیک طراحی شده است. در عین حال، اصول جدیدی برای کار ماشین‌های محاسبه با افزایش کنترل انسان در ابعاد نانو پیشنهاد شده است. ترانزیستورهای مولکولی، ترانزیستورهای تک‌الکترونی و اسپینترونیک حوزه‌های جدیدی هستند که مورد مطالعة دانشمندان حوزة نانو قرار دارند.
عنوان اسپینترونیک از تشابه این حوزه با رقیب (یا همکار) سنتی خود یعنی الکترونیک ریشه گرفته است. در شیمی خوانده‌ایم که الکترون‌ها و برخی دیگر از ذرات بنیادی به غیر از بار الکتریکی و جرم، خاصیت دیگری به نام اسپین هم دارند که یکی از خواص ذاتی الکترون به حساب می‌آید و دو مقدار مثبت یا منفی یک‌دوم به آن نسبت داده می‌شود. جریان الکتریکی، پتانسیل الکتریکی و میدان الکتریکی (که از روابط ماکسول پیروی می‌کنند) ابزار اصلی در تحلیل یک مدار الکترونیکی هستند و بیشتر با «بار الکترون» سر و کار دارند. محققان اسپینترونیک تلاش می‌کنند تا با استفاده از قواعد حاکم بر برهمکنش و تغییرات «اسپین الکترون» روش‌های جدیدی برای ساخت سیستم‌هایی معادل با مدارهای الکترونیکی به‌خصوص برای محاسبه و ذخیره اطلاعات بیابند.

فاینمن:
امکانات ماشین‌های کوچک اما متحرک چیست؟ دوست من، آلبرت هیبس، امکان جالبی برای یک ماشین کوچک پیشنهاد می‌کند. او می‌گوید که اگرچه ایدة بسیار خامی است، اما بسیار جالب است اگر بتوانی جراح را ببلعی. جراح مکانیکی را درون رگ قرار می‌دهی و او به داخل قلب می‌رود و اطراف را مشاهده می‌کند (مسلماً اطلاعات باید به خارج ارسال شوند). او پیدا می‌کند که کدام دریچه مشکل دارد و با یک چاقوی کوچک آن را جراحی می‌کند. بعضی ماشین‌های کوچکِ دیگر می‌توانند به طور دائم در بدن کار گذاشته شوند تا به اعضایی که نارسایی دارند، کمک کنند.

نکته:
ایده بدیع نانوماشین‌ها و کاربرد آنها در بدن انسان، نخستین‌بار در سخنرانی فاینمن مطرح شد. هر چند هنوز هم دانشمندان نسبت به عملی بودن این ایده در آیندة نزدیک مشکوک هستند، اما بسیاری از تحلیلگران آینده آن را امکان‌پذیر می‌پندارند. در یک نانوروبات، ابزارهایی برای حس کردن، پردازش اطلاعات، حرکت، ارسال اطلاعات به خارج و انجام عملیات خاص لازم است. دانشمندان موفق شده‌اند نمونه‌هایی از حسگرها، ردیاب‌ها و موتورهای بسیار کوچک شیمیایی را در ابعاد نانومتر ایجاد کنند، اما هر کدام از این عناصر نیاز به سیستم‌های پیچیدة جانبی برای تکمیل عملکرد خود دارند، مثلاً برای مشاهدة ردیاب‌ها نیاز به میکروسکوپ و برای تحلیل سیگنال حسگرها نیاز به سیستم‌های پردازندة ماکروسکوپیک وجود دارد. درست مانند یک کامپیوتر خانگی که هرچند پردازنده آن بسیار کوچک (در حدود چند میلی‌متر مربع) است، اما برای ایجاد کارایی نیاز به قطعات بزرگ جانبی دارد. امکان گنجاندن همه این ابزار در ابعادی کوچک‌تر از یک باکتری، به‌شدت مورد تردیدِ بسیاری از دانشمندان نانو است.

فاینمن:
اما من هراسی ندارم که سؤال آخرم را طرح کنم. آیا ــ در آینده بسیار دور ــ می‌توانیم اتم‌ها را آن‌جور که می‌خواهیم بچینیم؟ خود اتم‌های بسیار ریز! چه اتفاقی می‌افتد اگر بتوانیم اتم‌ها را یکی‌یکی طوری بچینیم که می‌خواهیم؟

نکته:
این کار در حال حاضر، با استفاده از میکروسکوپ نیروی اتمی روی سطوح تخت، ممکن است، در عین حال قدرت طراحی اجزای جدید با استفاده از کنترل خودآرایی مولکولی روز به روز در حال پیشرفت است. هرچند ایجاد ساختارهای دلخواه سه‌بُعدی در این روش‌ها و روش‌های مشابه محدود به چیدن لایه‌به‌لایه آنها می‌شود. به‌تازگی اَبَربلورهایی با لایه‌نشانی توسط لیزر ساخته شده‌اند که در واقع موادی مصنوعی به حساب می‌آیند که قبلاً وجود نداشته‌اند. در یکی از جدیدترین این دستاوردها، یک گروه هلندی با چیدن یک در میان لایه‌های اتمی از یک نارسانا و یک فلز ضعیف، موفق به مشاهدة خاصیت ابررسانایی شده است. 

ریچارد فاینمن توانسته است به نحوی شگفت‌انگیز بیشتر حوزه‌های فعالیت دانشمندان امروزی علوم نانو را در سخنرانی خود معرفی کند. آن‌هم زمانی که هنوز فعالیت چشمگیری در این رشته شروع نشده بود. او این کار را به دور از توهم‌سازی و کاملاً حساب‌شده انجام داد. امروز به‌خوبی می‌دانیم اهدافی که او 45 سال پیش مطرح کرد، یا به دست آمده‌اند یا در آینده نزدیک به وقوع خواهند پیوست. اینها همه نشان از پختگی و شهود قوی این فیزیکدان برجسته و رهبر علمی دارد.
ریچارد فاینمن (11 می 1918 تا 15 فوریه 1988) یکی از تأثیرگذارترین فیزیکدانان آمریکایی در قرن بیستم بود که نظریه الکترودینامیک کوانتومی را پیش برد. او سخنرانی برجسته و نوازنده‌ای غیرحرفه‌ای بود. فاینمن به خاطر کارهایش روی نظریه الکترودینامیک کوانتومی، جایزه نوبل فیزیک را در سال 1965 به همراه جولیان شوینگر و شین ایچیرو توموناگا از آنِ خود کرد. سخنرانی او را هنگام دریافت جایزه نوبل می توانید بخوانید. سه جلد کتاب فیزیک پایه با عنوان «سخنرانی‌های فاینمن درمورد فیزیک عمومی» بر اساس یک دوره آموزش درس فیزیک پایه در دورة کارشناسی توسط وی تهیه شده‌اند که شاید بتوان گفت به اندازه جایزه نوبل‌اش، مایه شهرت فاینمن بوده‌اند.

http://edu.nano.ir

۰۷ اسفند ۹۸ ، ۱۹:۱۹ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

کارگاه آموزشی کاربردهای فناوری نانو

۰۲ اسفند ۹۸ ، ۱۵:۳۸ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

توانمندی تدریس فناوری نانو

۰۲ اسفند ۹۸ ، ۱۳:۰۸ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

اجسام یونی

اگر چه اکثر اجسام مولکولی هستند، ولی بقیه از یونها تشکیل شده اند. یک یون یک ذره باردار است که از یک اتم یا گروهی از اتمهای متصل شده شیمیایی با اضافه شدن یا حذف الکترون بدست آمده است. سدیم کلرید جسم ساخته شده از یونها است.

گر چه اتمهای مجزا بطور عادی الکتریکی خنثی هستند و بنابراین تعداد مساوی از بارهای مثبت و منفی دارند، در موقع تشکیل ترکیبات معین اتمها می توانند یون بشوند. اتمهای فلزات تمایل بدست دادن الکترونها دارند، در حالیکه نا فلزات تمایل به گرفتن الکترون را دارند. وقتی یک اتم فلز نظیر سدیم و یک اتم نافلز نظیر کلر به یکدیگر نزدیک می شوند، یک الکترون می توانداز اتم فلز به اتم نا فلز برای تشکیل یونها منتقل می شود.

یک اتم که یک الکترون بیرونی را می گیرد یک یون با بار منفی می شود، که آنیون نامیده می شود. یک اتم که یک الکترون را می دهد یک یون با بار مثبت می شود، که کاتیون نامیده می شود. بطور مثال، اتم سدیم برای تشکیل کاتیون سدیم (Na+) می تواند یک الکترون بدهد. یک اتم کلر برای تشکیل آنیون کلرید (-Cl) می تواند یک الکترون بگیرد. یک اتم کلسیم می تواند برای تشکیل کاتیون کلسیم Ca2+ دو الکترون بدهد. توجه شود که دو بار مثبت روی یون با بالا نویس +2 نشان داده شده است.

بعضی از یونها دو یا چند اتم متصل شده شیمیایی دارند اما دارای زیادی یا کمبود الکترون هستند، در نتیجه واحد بار الکتریکی دارد. یک مثال، یون سولفات، SO42- است. بالا نویس -2 دو الکترون اضافی را روی گروه اتمها را نشان می دهد.

یک ترکیب یونی ترکیب تشکیل شده از کاتیونها و آنیونها است. سدیم کلرید تعداد مساوی از یونهای، Na+، و یونهای کلرید، -Cl، را دارد. نیروی جاذبه بین بارهای منفی و مثبت یونها را باهم با ارایش منظم در فضا کنار هم نگه می دارد. برای مثال، در سدیم کلرید، هر یون Na+، با شش یون Cl و هر یون Cl با شش یون Na+، احاطه شده است. نتیجه، یک بلور است، که نوعی جامد دارای آرایش سه بعدی منظم از اتمها، مولکولها، یا (در مورد سدیم کلرید) یونها است. شکل 1 بلورهای سدیم کلرید و دو نوع مدل استفاده شده برای نشان دادن آرایش یونها در بلور را نشان می دهد. تعداد یونها در بلور سدیم منحصر بفرد اندازه بلور را تعیین می کند.

فرمول ترکیب یونی با مشخص کردن کوچکترین عدد صحیح ممکن یونهای مختلف در جسم ، با حذف بار یونها است، بنابراین فرمولها فقط اتمهای موجود را نشان می دهد. برای مثال، سدیم کلرید تعداد مساوی از یونهای Na+  و Cl را دارد. فرمول NaCl (نه Cl Na+ ) نوشته می شود. آهن(III) سولفات ترکیبی است از یونهای آهن(III+Fe3، و یونهای سولفات، SO42-، به نسبت 2:3 است. فرمول به صورت Fe2(SO4)3 است، که پرانتزها فرمول یک ترکیب یونی بیش از یک اتم (بعلاوه بار یونها حذف شده است) را در برمی گیرد؛ پرانتزها فقط وقتی که دو یا چند تا یون این چنینی وجود دارد نیاز است.

 

 

 

شکل

بلور سدیم کلرید

چپ: تصاویر نشان دهنده بلورهای سدیم کلرید. وسط: مدل بخشی از بلور با آرایش منظم یونهای سدیم و یونهای کلرید. هر یون سدیم با شش یون کلرید، و هر یون کلرید با شش یون سدیم احاطه شده است. راست: مدل مشخصی از آرایش یونهای سدیم و کلرید در بلور سدیم کلرید جامد

گر چه اجسام یونی مولکول ندارند، ما می توانیم ما از کوچکترین واحد چنین جسمی صحبت بکنیم. واحد فرمولی یک جسم گروهی از اتمها یا یونها که بطور روشنی در فرمول نمادینه شده است. برای مثال، واحد فرمولی آب، H2O، مولکول H2O است. واحد فرمولی آهن(III) سولفات، Fe2(SO4)3 شامل دو یون +Fe3 و سه یون SO42- می شود. واحد فرمولی کوچکترین واحد چنین جسمی است.

 

 

همه اجسام، شامل ترکیبات یونی، از نظر الکتریکی خنثی هستند. شما از این واقعیت می توانید برای بدست آوردن فرمول ترکیب یونی، با توجه به فرمول یونها را بدست آورید. در مثال ذیل این مطلب نشان داده شده است.

 

http://khaneashimiardabil.ir

 

۰۲ اسفند ۹۸ ، ۱۲:۴۰ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر

اجسام مولکولی

مولکول گروه معلومی از اتمها هستند که بطور شیمیایی باهم پیوند خورده اند-که بطور محکمی با نیروهای جاذبه متصل  شده اند.  یک جسم مولکولی جسمی است که از مولکولها تشکیل شده است که همه مولکولها یکسان هستند. مولکولها در چنین جسمی خیلی کوچک هستند که حتی نمونه های خیلی کوچک حاوی تعداد زیادی از مولکولها هستند. یرای مثال، یک میلیاردم (9-10) از یک قطره آب، حدود 2 تریلیون (1012 ×2) مولکول آب دارد.

فرمول مولکولی تعداد دقیق اتمهای متعدد یک عنصر را در مولکول می دهد. مولکول هیدروژن پراکسید دو اتم هیدروژن و دو اتم اکسیژن با پیوند شیمیایی دارد. بنابراین، فرمول مولکولیش H2O2 است. سایر اجسام مولکولی ساده آب، H2O؛ آمونیاک، NH3؛ کربن دی اکسید، CO2، و اتانول (اتیل الکل)، C2H6O هستند. 

اتمها در مولکول به صورت توده ساده ای تصادفی قرار نگرفته اند. بلکه، اتمها با روش معلومی به صورت شیمیایی پیوند خورده اند. فرمول ساختاری یک فرمول شیمیایی است که نشان می دهد چگونه اتمها به همدیگر در مولکول متصل شده اند. برای مثال، معلوم شده است که هر اتم هیدروژن در مولکول آب به اتم اکسیژن متصل شده اند. بدین ترتیب، فرمول ساختاری                 آب H-O-H است. یک خط متصل کننده دو نماد اتمی در چنین فرمولی پیوند شیمیایی متصل کننده اتمها را نشان می دهد.

شکل 1 تعدادی فرمولهای ساختاری را نشان می دهد. فرمولهای ساختاری بعضی وقتها در نوشتن خلاصه شده اند. برای مثال، فرمول ساختاری اتانول ممکن است CH3CH2OH یا C2H5OH، بستگی به جزئیاتی که شما می خواهید، نوشته شود.

اردبیل

شکل 1

مثالهای فرمول مولکولی و ساختاری، مدلهای مولکولی، و نقشه های پتانسیل الکترواستاتیک

سه مولکول آب، آمونیاک، و اتانول نشان داده شده اند. نمایش نقشه پتانسیل الکترواستاتیک در انتهای شکل، توزیع الکترونها را در مولکول با طیف رنگی نشان می دهد. گستره رنگ از قرمز (دانسیته الکترون نسبتا بالا) به آبی (دانسیته الکترون نسبتا پایین) است.

 

 

نه تنها اتمها در مولکول با یک روش معلوم متصل شده اند بلکه آرایش فضایی معین را به خوبی نشان می دهند. اغلب شیمیدانها مدل های مولکولی را برای کمک به تجسم شکل و اندازه مولکولها ایجاد می کنند. شکل 1 مدلهای مولکولی ترکیبات متعدد را نشان می دهد. در حالیکه، نوع گوی-میله مدل پیوندها و زوایای پیوندی را به وضوح نشان می دهد، نوع فضا-پر کن حس خیلی واقعی فضای اشغال شده با اتمها را می دهد. همچنین شیمیدانها از مدلهای رایانه ای مولکولها، که در شکلهای مختلف قابل تولید هستند، استفاده می کنند.

برخی عناصر اجسام مولکولی هستند و با فرمول های مولکولی نشان داده شده اند. برای مثال، کلر، جسم مولکولی هستند و فرمول Cl2 دارد، هر مولکول از دو اتم کلر متصل شده بهم تشکیل شده است. گوگرد شامل مولکولهای ترکیب شده از هشت اتم با فرمول مولکولی S8 است. هلیم و نئون از اتمهای جدا تشکیل شده اند؛ که فرمولشان به ترتیب He و Ne هستند. سایر عناصر نظیر، نظیر کربن (در شکل گرافیت یا الماس) ساختار مولکولی ساده ندارند ولی تعداد خیلی زیاد نامعین اتم متصل بهم دارند. این عناصر، با نماد اتمیشان به سادگی نشان داده شده اند. (یک استثنا مهم شکل کربن بنام فولرن است، که در 1985 کشف شده بود و فرمول مولکولی 60C دارد.) مدلهای برخی اجسام عنصری در شکل 2.نشان داده شده اند.

 

 

 

 

 

 

شکل 2. مدلهای مولکولی برخی اجسام عنصری

                                                  از چپ به راست : کلر، Cl2؛ فسفر سفید، P4؛ و گوگرد،  .S8   

 

 

یک طبقه مهم از اجسام مولکولی پلیمرها هستند. پلیمرها مولکولهای خیلی بزرگی هستند که از تعدادی مولکولهای کوچکتر تکراری متصل بهم تشکیل شده اند. منومرها مولکولهای کوچک هستند که به شکل پلیمر بهم متصل شده اند. یک قیاس خوب برای تشکیل پلیمرها از منومرها ساخته شدن زنجیر کلیپهای کاغذی است. شما جعبه های کلیپهای کاغذی قرمز، آبی، و زرد دارید. هر کلیپ کاغذی یک منومر را نشان می دهد. شما می توانید یک زنجیر بزرگ از کلیپهای کاغذی را که نشان دهنده پلیمر هستند با الگوهای گوناگون و واحدهای تکراری بسازید. یک زنجیر می تواند یک الگو از تکرار دو قرمز، سه زرد، و یک آبی باشد. زنجیر دیگر می تواند فقط شامل کلیپهای کاغذی آبی باشد. همانند کلیپهای کاغذی، تولید یک یک پلیمر خاص در آزمایشگاه هم شامل کنترل منومرهایی متصل شونده و هم شامل کنترل الگوی اتصال می شود.

پلیمر ها هم طبیعی و هم سنتزی هستند. بطریهای پلاستیک سخت لیموناد اتصال شیمیایی دو منومر مختلف در یک الگوی متناوب است. پشم و ابریشم پلیمر های طبیعی از آمینو اسیدها با پیوندهای پپتیدی است. نایلون برای پارچه ها، کولار برای لباسهای ضد گلوله پیوند CONH را دارد. همچنین پلاستیک ها و لاستیک ها پلیمرهایی هستند که از منومرهای دارای کربن و هیدروژن ساخته شده اند. 

حتی تفلون که پوشش وسایل آشپزی است پلیمری از نتیجه اتصال منومر CF2CF2 است.

http://khaneashimiardabil.ir

         

۰۱ اسفند ۹۸ ، ۱۸:۱۴ ۰ نظر موافقین ۱ مخالفین ۰
سعید ملکی آقاباقر
/a>